
029-04

1

Abstract – In this paper we present the results of our research
about a semantic layer architecture for an educational tool. It
uses technologies from the Semantic Web, and is based on the
original Semantic Web layer architecture, but respects recent
critiques and proposals of that architecture. Our solution is
composed of four layers with respect to a distributed system like
the Internet. Each layer can be located on a different computer
and on different platforms. Furthermore, the details about the
representation and encoding of the heterogeneous knowledge, as
well as the reasoning mechanism and the communication
between the different layers, are transparent for the user. In
order to test whether our solution is useful in schools, we
implemented it in an educational tool, CHESt (Computer History
Expert System) that offers a semantic search engine to the user.
The facility of interacting with the tool, by means of natural
language, and the multimedia aspect of the answers returned by
the system, make CHESt a useful e-learning tool in everyday
classes.

Index Terms – Information retrieval, knowledge
representation, natural language interfaces, semantic networks.

I. INTRODUCTION

The WWW is today accepted in schools as modern
didactical tool with its advantages and disadvantages. If the
tremendous amount of information on the web is on the one
hand a potentially interesting source of knowledge, it is on the
other hand a dangerous pitfall, mainly due to the weakness of
the search engines. Most of them are not able to deliver only
pertinent and secure results; not pertinent means that the
search engine does not understand the meaning of the user's
question; not secure means that the search engine is not able
to guarantee that the delivered result is true and correct.
Today, using a search engine on the web is often the exercise
of filtering noise from the resulting list of links; it is the
famous story about the search of the needle in the haystack. A
good e-learning tool must be able to return secure and
pertinent information to the user, without assuming that (s)he
is expert in expressing her/his question in a computer
optimized way, for example by using Boolean operators. Our
aim is to create an "intelligent" tool, that understands the
students' questions, and that returns only pertinent documents

from a knowledge base. Our prototype CHESt (Computer
History Expert System) can be used as a complement to
classical education. For example, the teacher can use it in
class to introduce a new topic or to promote group work,
students can use it to do their homework and it offers
excellent possibilities for distant learning. A first draft of
CHESt, with a common keyword search engine, was
presented in [5]. Reflections about a possible semantic search
engine were firstly presented in [6]. Pedagogical analyses of
the use of such an "intelligent" e-learning tool in every-day
classes were published in [7]. In more general terms, we try to
create the formal and technical base for a polyvalent and
pragmatic educational tool. For this, the following
requirements must be fulfilled:
• The human-machine interface is simple and easy. Hence,

the complexity of its inference engine and retrieval
algorithms is transparent to the user.

• The semantic search engine is platform independent.
• The tool is operational without special configuration and

installation procedures on the user's computer.
• Distant and local access facilities are provided.

Finding a solution to all these requirements was the aim of
our recent research efforts, which are based on experiences
and technologies from the field of Computational Linguistics
and the Semantic Web. In this paper we focus on the aspect of
the layer architecture that is implemented in the latest version
of CHESt.

We discuss briefly the layer architecture of the Semantic
Web in section II. In section III, we present our simplified
layer architecture that is implemented in CHESt. Sections IV
to VII present the four layers of our architecture: Knowledge,
Inference, Communication, and Presentation Layers. A case
study of our tool will be presented in section VIII. Section IX
presents some interesting and related projects. We conclude
with a discussion of the advantages and weaknesses of our
layer architecture in section X.

II. DISCUSSING THE SEMANTIC WEB’S LAYER ARCHITECTURE

The vision of the Semantic Web put together so many
experts from so many different existing and new domains
(information retrieval, artificial intelligence, knowledge
management, etc.) as rarely, if ever, before in the history of
computer science. Although our project is not directly related
to the Semantic Web, it builds on technologies that stem from
this field. Therefore, we start with a small introduction to the
basic properties of the Semantic Web taken from [1]:

Semantic Layer Architecture for an Educational
Expert System in Computer History

Serge Linckels, Christoph Meinel

Submitted for the 2004 International Conference on Advances in
Intelligent Systems - Theory and Applications (AISTA), Luxembourg, in
cooperation with the IEEE Computer Society. Manuscript received September
15, 2004.

S. Linckels is with University of Trier, Germany, Department for

Theoretical Computer Science and New Applications, http://www.linckels.lu,
e-mail: linckels@TI.uni-trier.de.

Ch. Meinel is with Hasso-Plattner Institute, University of Pottsdam,
Germany, http://www.hpi.uni-potsdam.de/, e-mail: Meinel@hpi.uni-
potsdam.de.

029-04

2

• A common language to structure data and rules. This
should allow to create ontologies which allow humans
and machines to have the same understanding of shared
concepts.

• A distributed system like the Internet, thus completely
platform independent. There is and will be no central
control of the data or the software, because such a system
will rapidly become unmanageable.

• A layer architecture, the so called Layer Cake [4] (see
figure 1). On a basic level, the knowledge is semantically
annotated and ontology languages build on this
representation, which allow programs (for example:
agents or search engines) to reason about the knowledge.

Complex computer systems, for example operating systems
or expert systems are built on a rigorous and well-reasoned
layer architecture. The Semantic Web is based on such an
architecture which, however seems to be quite complex and
idealistic. The discussion of all details, critics and proposals
about that subject are outside the scope of this paper. We will
only summarize the two most significant ones for our project.

Firstly, one major criticism is its complexity which makes

the implementation unrealistic [8, 9]. For example, the idea of
building ontology languages like OWL [12] on top of RDF
Schema [11] raises the complexity of the system that
implements this architecture. Secondly, the syntactic and
semantic characterization underlying RDF(S) differs
significantly from the syntax and semantics of most first-order
logical languages [9]. A one-to-one data exchange between
the RDF- and Ontology Layer is not free of ambiguities. For
example, OWL's theory of classes clashes with the underlying
principles of RDF(S) in the same syntax and extended
semantics layer [8, 9].

A lot of interesting simplifications and solutions to the
Semantic Web layer architecture are proposed in literature.
Most of them propose to simplify or to suppress layers. In [3]
for example, a solution is proposed to merge the Ontology-
and RDF Layers to one, and to extend it with the more
powerful RDFS(FA) formalism [10].

III. OUR SEMANTIC LAYER APPROACH
Inspired by the Semantic Web technologies and theories,

we developed a semantic retrieval system around a straight-
forward layer architecture. In fact, there are mainly two ways
to improve the layering of the Semantic Web [3]:
• To change some aspects in the design principles of higher

ontology languages built on RDF(S) and to leave the
RDF(S) specifications unaltered.

• To modify the specifications of RDF(S) in order to make
them more compatible with the underlying reasoning
formalism of ontology languages like OWL(DL).

Our layer architecture defends clearly the first proposal and
keeps the RDF(S) specifications untouched. We built on top
of our RDF(S) knowledge layer a native inference engine with
adapted and optimized reasoning mechanisms for our domain.
In general, our layer architecture is composed of four main
layers (see figure 2), each being able to hold sub-layers and
modules.

The Knowledge Layer regroups all knowledge resources

that are used for the reasoning processes. It contains the
RDF(S) stores for the semantic description of the multimedia
clips and the domain language (CHESt dictionary).

The Inference Layer is technically the most important,
because it implements the semantic retrieval system. It is
composed of the natural language processing (NLP) module,
the inference engine for reasoning over the knowledge base
with respect to the user question, and the XML factory
module for generating and encoding the system's answer.

Fig. 2. Schema of our semantic layer architecture with its four main
layers: Knowledge, Inference, Communication, and Presentation. Each
layer is composed of sub-layers and modules.

Graphical User Interface (GUI)
Embedded

Player XML parser

Communication Interface

CHESt
KB

Inference Engine

 RDF Communication
 Interface RDQL

Dictionary
Interface

Answer
XML

RDF
Store

RDFS
Store

CHESt
dico.

NL question

Pr
es

en
ta

tio
n

KB interface

Metadata
processing
C

om
m

un
ic

at
io

n

Communication Interface

NLP XML Factory

In
fe

re
nc

e
K

no
w

le
dg

e

Fig. 1. The semantic layer architecture. The top three layers exist
only in theory. The Ontology Layer is heavily criticized. The RDF
and XML layers are used today.

RDF + RDF Schema

XML + Namespaces + XML Schema

URI Unicode

Self-
desc.
doc.

Ontology vocabulary

Logic

Proof

Data

Data

Rules

D
ig

ita
l S

ig
na

tu
re

Trust

029-04

3

The Communication Layer specifies the exchange of
information between the distributed Inference- and
Presentation Layers. It must ensure a transparent but error-free
communication.

The Presentation Layer implements the Human-Machine
Interface, and thus needs an ergonomically adapted look. It
allows the user to freely formulate a question in natural
language (NL). The result, a commented list of multimedia
clips, is then presented to the user. Each clip can be viewed in
an embedded player.

IV. KNOWLEDGE LAYER
The Knowledge Layer is the set of data sources which are

accessed by the upper inference engine for reasoning about
the knowledge. The raw data in the knowledge base can be of
any form; in our case multimedia sequences. Indeed,
interpretations over the knowledge are only promising if its
content is semantically annotated with sufficient metadata
[30]. Therefore, it seems evident to use a consistent semantic
representation of the knowledge, and to offer a uniform
interface to the upper layer.

A. Sub-Layer of Raw Data
The raw material for CHESt was hundreds of slides in

electronic form about computer history. These slides were
used to produce the multimedia sequences; we prefer the
expression clip. We produced more than 300 clips with a
special tool called tele-TASK [13, 14, 15]. It allows creating
one well structured stream of data, in our case RealMedia files
(.rm). Each clip presents multimedia information in three
windows at the same time (see figure 6):
• A window showing a video sequence (with the

corresponding audio).
• A window showing the desktop of the presenter's

computer.
• A window which can be used to display further

information, for example pictures, hyperlinks, book
references, etc.

More details about the encoding of the multimedia
sequences can be found in [7]. All clips are identified by a
Unique Resource Identifier (URI), and can be located on a
distant server (accessed by file sharing or streaming), or on
the local machine of the user (for example on a CD-ROM).
The different options and versions of CHESt are discussed in
section VIII.

B. Semantic Annotation of the Clips
Classical retrieval systems work by indexing important

words from the documents' corpuses [30]. In our case
however, the clips are stored in a non-textual form. Therefore,
the search for pertinent documents cannot be done by
processing the documents' content. Furthermore, we are not
interested in the documents’ content but only in the semantics
of the document (what it is about). Thus, all clips must be
described with metadata which explain the meaning of its
content.

We used the W3C recommendation RDF(S) [11] to
describe every document in the knowledge base with
metadata. RDF is a mechanism for recording statements about
resources so that machines can easily interpret the statements
[16]. In our case, a resource is a multimedia clip. A bit of
knowledge about a resource is represented by a triple, which
is three pieces of information: a subject (resource), a property
(predicate) and a value (object). The resources were
categorized in a taxonomy that is in our case about computer
history. Details can be found in [6]. As we mostly used
elements from two popular namespaces, Dublin Core [17] and
vCard [18], we only needed to define few new elements with
RDF Schema. We also defined several rules how the elements
should be used. The complete CHESt RDF Schema definition
can be found at [19].

There should be enough metadata to describe semantically
each clip. Metadata are in fact nothing else than RDF
statements (triples) about the clips (resources). With our
concept to use short clips instead of long sequences, we have
the great advantage that the meaning of one clip can be
described with few metadata. We encoded the metadata in
RDF/XML. An example is presented in figure 3.

The creation of the RDF description for a whole knowledge

base is often a painful task if it is done manually. The
automatic annotation and the information extraction are hot
topics in computer science, especially in the field of web
engineering [21]. This task is even harder when dealing with
multimedia sequences [20]. In our implementation, we used
templates to create the documents so that metadata could be
found and extracted more easily. More than 85% of the RDF
description was generated automatically. Details about that
solution can be found in [6].

V. INFERENCE LAYER
The inference layer is the most important in our expert

system, because all the reasoning is done at this stage. In a
simplified view, it receives a question in NL from the upper
layer, translates it into a semantic query, launches it against
the knowledge base, and finally returns the pertinent
multimedia clips to the upper layer.

A. Domain Ontology
Our system can be more formally defined as a domain

Fig. 3. Example of a semantic annotation of a multimedia clip with RDF.
It describes a resource (a multimedia clip) about the transistor, which is
classified in the taxonomy as electronic component (EComponent).
Metadata are the title (in a human readable form), the year the invention
was made, and the list of the inventors. The example shows that a
resource exists for each of the inventors.

<chest:EComponent rdf:about="…transistor.rm">
 <DC:title>Transistor</DC:title>
 <DC:date>1947</DC:date>
 <DC:creator rdf:resource="…shockley.rm" />
 <DC:creator rdf:resource="…bardeen.rm" />
 <DC:creator rdf:resource="…brattain.rm" />
</chest:EComponent>

029-04

4

ontology. With respect to the critics and proposals of the
Semantic Web's layer architecture discussed in section III, we
decided not to use a higher ontology language like OWL, but
to use set- and graph theory to reason about the knowledge.
Our layer architecture is based on a semantic model; a
hierarchy of concepts (HC) [31].

Definition 1 (domain ontology): A domain ontology
O(L,H) is composed of a domain language L and a hierarchy
of concepts H. L is the set of all words over a certain
alphabet, L ⊆ ∑* that are known by the system for the given
domain ontology. The hierarchical classification of concepts
H = (V, E, v0) is a rooted tree, with V the set of nodes
representing the concepts, E the set of edges and v0 the root-
node.

Definition 2 (classification): A multimedia clip d is
classified under a concept v, if d is about v and there is not a
more specific concept v' under which d could be classified.

In certain cases, a document can be classified in more than
one concept. For example the clip introducing the ARPA (the
US agency, which was responsible for the invention of the
ARPANet, the ancestor of the Internet) is classified in a
concept named "Net" but also in a concept named "Inventor".
Figure 4 shows an example of a taxonomy about computer
history.

B. Reasoning mechanism
It is not the topic of this paper to explain in detail how our

inference engine works, see [5, 6] for details. But for a better
understanding of our layer architecture, we will summarize its
mechanism briefly.

As the user question is expressed in NL, but the knowledge
base is described in RDF(S), a direct comparison is not
possible because both representations are not compatible.
Therefore, we transform the user question into a RDF
semantic query that is launched against the knowledge base.
This operation is done by the interpretation function I.
Definition 3 (question interpretation): The interpretation I
of a user question q in NL for a domain ontology O and an
allocation function g is written

I [] Rq O
g =

with R being the set of relevant documents.

The interpretation function I processes a user question q in
three steps. Firstly, it filters out all the noise from the user
question and keeps only the semantically relevant words. To
do this, the inference engine uses as semantic knowledge
source the domain language L, stored as domain dictionary
(see definition 1). This dictionary could be an external
knowledge source for example WordNet [32], or like in our
implementation an adapted domain dictionary about computer
history. The result is Φ, a set of semantically relevant objects
and predicates. In a second step, this intermediate expression
is mapped to a general assertion aq using the allocation
function g. In the third and final step, the mapped assertion is
enriched with the values of the semantically important words
from the user question q. This allows to create a semantic
query which is launched against the knowledge base. The
result is R, the set of relevant documents. Each document d
comes with a quantifier σ that is expressed in a certain logic
W. This allows to rank the documents from R according to
their pertinence, if more documents were found. The choice of
W depends on how expressive one wants to be in the
approximation of the meaning of the concepts, and on the
complexity of the NLP techniques used to process words. For
example, W could be based on Bayesian Logic to compute the
probability that d is relevant for a given user. An example of
the reasoning mechanism is given in figure 5.

C. Communication Interfaces
The Inference Layer can be seen as a black-box. It receives

a NL question, performs some reasoning about it, and returns
an answer. It communicates via standard interfaces; one to the
upper Communication and Presentation Layers, and one to the
lower Knowledge Layer. Both will be described below. But
let us first recall that the inference engine must be platform
independent, even portable, and accessible over a network by
client applications from heterogeneous platforms (we refer
here to clients as the user applications). Therefore, the
modules of the Inference Layer were developed in Java; we
used the Jena API [22].

The communication interface to the Knowledge Layer uses
the RDF capabilities of Jena. The RDF(S) stores can be
accessed either as a tree, either as a database. We used the

Fig. 4. Example of a taxonomy for computer history; a hierarchy of
concepts (HC). Each node of this tree represents a specific concept. The
clips are classified with respect to this HC.

Invention

Net Software Hardware

EComponent Computer

Inventor

Clip

Language OS

Fig. 5. Example of the interpretation function I. A user question q
expressed in NL is filtered to a set Φ of relevant words. The question is
then mapped to a general assertion aq and enriched with values from the
original sentence. Finally, a semantic query is generated and executed.

q = “What did Konrad Zuse invent?”

Φ = {(dc:creator;“invent"),(chest:Inventor;“Zuse")}

aq = An invention was invented by one or more inventor(s)

R = SELECT WHERE (?x;dc:creator;"Zuse")

Question interpretation

Assertion mapping

Query

029-04

5

latter and the query language RDQL [23].
The communication interface to the Presentation Layer is

based on two requirements. Firstly, the answer to the user's
question must be available for the user in a very short time.
This of course excludes sending the whole resulting
multimedia clip(s) to the user. Instead, we transmit only two
pieces of information per relevant document: the URI where
the clip can be retrieved, and metadata about that document. It
is up to the client application how this data will be presented
to the user (see section VII). Secondly, the Inference Layer
must be transparent to the user, independently if the inference
engine runs as a process (service) on the user's local machine,
or if it is accessed distantly as a web service. Hence, the
answer of the Inference Layer must be encoded in a platform
and system independent way. Our solution is to create a
standard interface, based on a XML encoding, as it is done by
most web services.

VI. COMMUNICATION LAYER
The Communication Layer allows a transparent

communication between the client application (Presentation
Layer) and the inference engine (Inference Layer). It should
not be important if these two layers are on the same machine
or not. Furthermore, the communication must be error-free,
simple and hardware independent. It seemed to us that the best
solution is a socket communication. A socket is basically a
host identification and a port.

Using sockets has three advantages: it uses TCP/IP, offers
an error-free transmission, and components for most
development environments are widely available. As for the
first issue, a socket communication is based on the TCP/IP
protocol stack. Thus, TCP/IP must be installed on the user's
computer to run the CHESt client application. The advantage
is that TCP/IP is the most popular protocol at the moment and
most people have it installed on their computer for using the
Internet. Secondly, another advantage to use sockets is that the
whole handshaking and error correction is assumed by the
protocol stack. In fact, TCP/IP offers an error-free
transmission. All details and used technologies (for example
LAN adapter or analogous modem) are transparent for the
user. Finally, all popular development environments offer
components to easily implement a socket communication.
This allows developers to create their own CHESt client
application that communicates with the inference engine.

Technically, the Inference Layer is a service which runs on
a distant or local machine. It listens on a specific port for a
client call. A client call is the reception of a question string
(the user question). The client holds the communication and
waits for receiving the XML encoded answer. Then the
transmission is ended. The client contacts the server by means
of a port number, and an IP address or a hostname (localhost
if the Inference Layer is located on the same machine).

VII. PRESENTATION LAYER
The Presentation Layer represents the interface between the

user and the machine. It gets a question from the user and
transmits it to the inference engine via the Communication
Layer. In return, it displays the result(s) and allows the user to
watch the clips. In our implementation, the Presentation Layer
is available as web interface and as Microsoft Windows client
application. Figure 6 shows a snapshot of our client
application, which was developed in Borland Delphi. We
begin this section with a discussion of the ergonomically and
pedagogical aspects of the Presentation Layer, before
presenting more technical details. Further pedagogical
analysis about CHESt as e-learning tool can be found in [7].

A. Pedagogical Aspects
Let us put in evidence that the basic task of the Presentation

Layer is to allow people, mostly not computer experts, to
express their question by means of NL, and to watch the
resulting document(s). Therefore, the graphical user interface
(GUI) must be as simple and ergonomic as possible,
especially because we are dealing with an educational tool. An
e-learning interface should neither be too complicated nor too
simple: if too complicated, the student gets lost in the menus;
if too simple, (s)he could perceive the new tool as a game and
risks not concentrating on the real issue of the lesson. The
interface should be adapted to the needs of the user and keep
him/her concentrated on what (s)he sees and learns. It is
evident that all technical details (for example the complete
communication with the lower layers, the reasoning and
retrieval tasks, etc.) must be invisible for the user.

Let us mention here a possible improvement; an interface
that adapts automatically to the user: simple interface for kids,
more expressive interface for experts. Beside the pure layout
problems, XSLT [26] could be used to filter too complicated
documents from the resulting set.

B. Technical Aspects
The client application must be ready for use immediately,

without installation or configuration procedures. For CHESt,
the client application is one executable file that can simply be
copied to the computer's disk. All needed components are
embedded in the Presentation Layer: the communication
interface for the socket communication, the XML parser for
decoding the received answer from the inference engine, and
the player for watching the clips.

Contrary to the Inference Layer, the Presentation Layer
depends directly on the kind of documents in the knowledge
base. In our case, we display multimedia clips, thus we must
use a particular player which is supported by the operating
system. This is the reason why the client application cannot be
implemented in Java, which would of course be a promising
solution; there would be only one platform independent client
application. But as far as the authors know, no player for
multimedia video sequences is available for Java. As
described in section IV, the clips in our knowledge base are
recorded as RealMedia files. These can be watched in any
compatible player, for example the free RealOne Player [25].
We embedded this player as Active-X object [29] in all

029-04

6

CHESt versions (see section VIII). This requires that the used
player is installed on the user's computer. Specific players
must be used for implementations on other platforms, for
example the free Helix Player [27] for Linux.

The Presentation Layer must also be able to process the
XML file that contains the encoded answer from the inference
engine. Normally, most modern developing environments
offer such XML parser components. CHESt displays the
received list of clips, and also the delivered metadata. In some
cases, the metadata can already be a satisfying answer for the
user, so that the whole clip must not be watched.

At this place we want to report the negative result of
another approach which we explored. The interaction with the
inference engine could be seen as distant procedure call. A
beautiful solution would be to use the Java Native Interface
(JNI) to execute some Java code inside the client application.
Most modern development environments offer a JNI; we used
[24]. Unfortunately, not all Java programs are compatible with
any JNI. We must admit that we were not able to develop a
working solution for generating the XML encoded answer via
a JNI-call. Therefore, we canceled this possibility and opted
for the more straightforward socket solution.

VIII. CASE STUDY
In this section we start with some details about three

different implementations that we tested for CHESt. We will
explain the technical and pedagogical differences of each
version. We will also describe some experiments with our
prototype.

A. Three Versions of CHESt
In order to test the most appropriated configuration of our

educational tool, we created three versions of CHESt:
(1) CHESt as pure web application and streaming of the

clips.
(2) CHESt as pure local application and local access to the

clips.
(3) CHESt as distributed application with streaming or local

access to the clips.
Let us discuss some pedagogical and technical aspects of

these three versions. (1) The first pure web version is the
simplest to use; CHESt is available everywhere from a web
browser. The Knowledge and Inference Layers can of course
be on the same server. The only reasonable access to the clips
is via a streaming server. (2) The second pure local version

Fig. 6. Screenshot of the prototype CHESt with a semantic search about the inventor Konrad Zuse. The system does not return all clips
about Zuse, but understands that the user wishes a general explanation about this inventor. The system displays the pertinent result(s) in
the bottom right-hand corner, here only one result. Selecting an item will play the corresponding clip, like the one shown in this
example, where the teacher uses an interactive board. Added handwritten comments made by the teacher are displayed in real time.

029-04

7

has the ideal advantage, that no streaming server is necessary,
thus performance problems are inexistent (no bottlenecks for
the streaming server or for the network access). However, we
see two main disadvantages. Firstly, the teacher must copy the
client application, as well as the complete multimedia
knowledge base on all used computers. This is time- and disk
space consuming. Secondly, neither the clips, nor the software
are prevented from being copied illegally. Nevertheless, it is
an ideal solution for fast access to the clips without special
technical infrastructure. We also managed to store the whole
knowledge base with the required software on one single CD-
ROM. (3) The third version of CHESt takes full profit of our
semantic layer architecture, and implements a distributed
system. It is the best adapted for being used in an intranet, for
example inside a school. This is also the type of installation
we kept for our further experiments (see below). In this
version, the Knowledge Layer is located on a server, normally
with a streaming access to the clips. The performance of the
system is best if the servers that host the Knowledge- and the
Presentation Layers are in the same LAN. A direct access to
the clips on a shared disk is possible with the necessary grants.
The Inference Layer is located on a different (or the same)
application server. The students load the client application
from an application server (or a local disk) and run it locally
on their machine.

B. Practical experiences
CHESt was first used in the spring term of the academic

year 2003/2004 in a school in Luxembourg/Europe. The aim
was to test the interface and the multimedia content, not the
searching algorithm. The first version of CHESt included a
simple keyword search engine; the user entered some
keywords, for example "transistor" and got a list of all clips in
which this keyword appeared. He/she could then watch these
clips. We were able to test how students get along with the
interface and the multimedia content. We were particularly
interested in how they would learn with such a tool and how
motivating this tool was as opposed to classical learning
methods.

Based on the results of that first experiment, we are
currently preparing a second experiment with a version of
CHESt, which fully implements our novel semantic layer
architecture and our semantic search engine. This pilot project
will be launched in the summer term 2005 in several selected
schools in Luxembourg and Germany with a representative
number of students. External psychologists and teachers will
supervise and evaluate the test. The experiment will focus on
two main issues: test the effectiveness of the semantic search
engine and verify that school results can be improved if
students use such an "intelligent" e-learning tool.

IX. RELATED WORK
In this section, we describe briefly some interesting and

related projects. Some are related due to their layer
architecture, others due to their reasoning- or retrieval
mechanism, or NLP techniques.

In [2], an integration architecture is proposed which aims at
exploiting data semantics in order to provide a coherent and
meaningful (with respect to a given conceptual model) view
of the integrated heterogeneous information sources. The
architecture is split into five separate layers to assure
modularization, providing description, requirements, and
interfaces for each. It favors the on-demand retrieval paradigm
over the data warehousing approach. In general, there are two
paradigms for knowledge based systems: the data warehouse
approach and the on-demand retrieval approach. The first
builds on a central data collection which can be queried. The
second collects the data from different sources in respect to a
user question. The novelty of the proposed architecture lies in
the combination of semantic and on-demand driven retrieval.

The KIM [29] platform provides a novel Knowledge and
Information Management (KIM) infrastructure and services
for automatic semantic annotation, indexing, and retrieval of
documents. It provides mature infrastructure for scaleable and
customizable information extraction as well as annotation and
document management, based on GATE (http://gate.ac.uk/).
In order to allow easy bootstrapping of applications, KIM is
equipped with an upper-level ontology and a knowledge base
providing exhaustive coverage of entities of general
importance. The ontologies and knowledge bases involved are
handled using cutting edge Semantic Web technology and
standards, including RDF(S) repositories, ontology
middleware and reasoning. From a technical point of view, the
platform allows KIM-based applications to use it for
automatic semantic annotation, content retrieval based on
semantic restrictions, and querying and modifying the
underlying ontologies and knowledge bases.

A very interesting approach for querying a distributed
knowledge source like the WWW and to automatically rank
the resulting documents was proposed by the university Blaise
Pascal Clermont2 and the university Claude Bernard Lyon1
[33]. The user can express his question in NL. Description
Logics were used as a formal representation language for
specifying documents and queries. The matching step consists
in comparing the two terminologies obtained from a query and
a document. Given two terminologies TQ and TD describing a
query Q and a document D respectively, the goal is to find the
elements in TQ and TD that match. This is done by a matching
function that takes two terminologies as input and produces a
one-to-one mapping between defined concepts of the two
terminologies that correspond semantically to each other.
Finally, the documents are ranked according to the size of the
extra information contained in the query and not in the
documents. The extra information is calculated with the help
of the difference operation between pairs of mapped elements.
The proposed algorithm computes the difference between
ALE-concept descriptions. It takes into account linguistic
relations (synonymy, hyponymy...) between concept names
occurring in the two descriptions.

029-04

8

X. CONCLUSION AND OUTLOOK
We presented in this paper a semantic layer architecture for

an educational tool concerning computer history. The essential
advantage of our semantic layer architecture, especially in an
educational environment is that the complexity of the
reasoning mechanism as well as all underlying technical
representations of the knowledge, are transparent to the user.
It also respects a distributed approach; the knowledge base,
the inference engine and the client application can be on
different machines and sites. The inference engine is
implemented in a platform independent layer. The access to
the documents in the knowledge base can be configured with
respect to the available infrastructure and resource constraints.
Our layer architecture was implemented in a prototype called
CHESt, but it can be applied easily to any other system. The
facility of interacting with the tool and the multimedia aspect
of the answers returned by the system make CHESt a useful
complement to traditional education.

Our proposed layer architecture uses technologies from the
Semantic Web, and is based on the original Semantic Web
layer architecture, but it respects recent proposals and
critiques. Unfortunately, the missing of higher layers in our
pragmatic solution implies that no proof or guarantee can be
given to the user that the proposed clips are really the most
pertinent.

We are currently working on the improvement of the
reasoning task, in order to create a more deterministic
inference engine, maybe by adding a more powerful layer on
top of our Inference Layer. Furthermore, a more expressive
formalism for reasoning about the knowledge seems to be
necessary. We are about to investigate whether to take the
approach that is proposed in [3] (see section III), or whether to
use the W3C approach by using the ontology language OWL
with its OWL-DL extension, based on Description Logics.

REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila, "The semantic web".

Scientific American, 2001.
[2] R. Vdovjak, and G.J. Houben, "RDF based architecture for semantic

integration of heterogeneous information sources". Proc. International
Workshop on Information Integration on the Web (WIIW), Rio de
Janeiro, Brazil, 2001, pp. 51-57.

[3] B. C. Grau, "A possible simplification of the semantic web architecture".
Proc. ACM World Wide Web (WWW), New York, USA, 2004, pp. 704-
713.

[4] E. Miller, "W3C Track - The Semantic Web", ACM World Wide Web
(WWW), http://www.w3.org/2002/Talks/www2002-w3ct-swintro-em/,
Honolulu, Hawaii, USA, 2002.

[5] S. Linckels, and Ch. Meinel, "An application of semantics for an
educational tool". Proc. International Association for Development of
the Information Society Applied Computing (IADIS AC), Lisbon,
Portugal 2004, pages II 234-II 239.

[6] S. Linckels, and Ch. Meinel, "Automatic interpretation of natural
language for a multimedia e-learning tool". Proc. International
Conference on Web Engineering (ICWE), Munich, Germany, 2004, pp.
435-439.

[7] S. Linckels, and Ch. Meinel, "An educational tool that understands
students' questions". Proc. Association for Educational Communications
and Technology (AECT) "All That Jazz", Chicago, Illinois, USA, 2004.

[8] P. F. Patel-Schneider, and D. Fensel, "Layering the Semantic Web:
problems and directions". Proc. International Semantic Web Conference
(ISWC), Sardinia, Italia, 2002.

[9] I. Horrocks, P. F. Patel-Schneider, and F. v. Harmelen, "From SHIQ and
RDF to OWL: The making of a web ontology language". Journal of Web
Semantics, 1(1):7-26, 2003.

[10] J. Pan, and I. Horrocks, "RDFS(FA): A DL-ised sub-language of
RDFS". Proc. Description Logic Workshop, volume 81 of CEUR
(http://ceur-ws.org/), pages 95-102, 2003.

[11] World Wide Web Consortium, "Resource Description Framework
(RDF) / W3C Semantic Web", http://www.w3.org/RDF/.

[12] World Wide Web Consortium, "Web Ontology Language OWL / W3C
Semantic Web Activity", http://www.w3.org/2004/OWL/.

[13] M. Ma, V. Schillings, T. Chen, and Ch. Meinel, "T-Cube, a multimedia
authoring system for eLearning". Proc. Association for the Advancement
of Computing in Education (AACE), Phoenix, USA, 2004, pp. 2289-
2296.

[14] Ch. Meinel, and V. Schillings, "tele-TASK - Teleteaching Anywhere
Solution Kit". Proc. ACM Special Interest Group on University and
College Computing Services (SIGUCCS), Providence, USA, 2002, pp.
130-133.

[15] T. Chen, M. Ma, Ch. Meinel, and V. Schillings, "Tele-TASK,
Teleteaching Anywhere Solution Kit", http://www.tele-task.de/.

[16] S. Powers, Practical RDF, Solving Problems with the Resource
Description Framework, O'Reilly, USA, 2003.

[17] Dublin Core Metadata Initiative (DCMI), http://dublincore.org.
[18] World Wide Web Consortium, "Representing vCard Objects in

RDF/XML", http://www.w3.org/TR/2001/NOTE-vcard-rdf-20010222/.
[19] S. Linckels, CHESt NS, http://www.linckels.lu/chest/elements/1.1/.
[20] R. Troncy, "Integrating structure and semantics into audio-visual

documents". Proc. International Semantic Web Conference (ISWC),
Sanibel Island, USA, 2003.

[21] A. Kiryakov et al., "Semantic annotation, indexing, and retrieval". Proc.
International Semantic Web Conference (ISWC), Sanibel Island, USA,
2003.

[22] HP Labs Semantic Web Research, " Jena – a Semantic Web framework
for Java", http://www.hpl.hp.com/semweb/.

[23] L. Miller, A. Seaborne, and A. Reggiori, "Three implementations of
SquishQL, a simple RDF query language". Proc. International Semantic
Web Conference (ISWC), Sardinia, Italy, 2002.

[24] M. Mead, "Using the Java native interface with Delphi",
http://www.pacifier.com/~mmead/jni/delphi/.

[25] RealNetworks, "RealOne Player", http://www.real.com/.
[26] World Wide Web Consortium, "XSL Transformations (XSLT)",

http://www.w3.org/TR/xslt/.
[27] Helix Community, https://helixcommunity.org/.
[28] RealNetworks, "RealOne Player scripting guide",

http://service.real.com/help/library/guides/realonescripting/browse/htmfi
les/title.htm/.

[29] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M.
Goranov, " KIM – semantic annotation platform". Proc. International
Semantic Web Conference (ISWC), Sanibel Island, USA, 2003.

[30] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval,
Addison-Wesley, USA, 1999.

[31] P. Bouquet et al., "Semantic coordination: a new approach and an
application". Proc. International Semantic Web Conference (ISWC),
Sanibel Island, USA, 2003.

[32] WordNet, http://www.cogsci.princeton.edu/~wn/.
[33] N. Karam et al., "Semantic matching of natural language web queries".

Proc. International Conference on Web Engineering (ICWE), Munich,
Germany, 2004, pp. 416-429.

